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Notation for Elastic Stiffness in VTI Media

With σij being the ij component of stress, and

ekl being the kl component of strain:
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where a = b + 2m (e.g., Musgrave, 1970; Auld, 1973).

Indices i, j, k, l range from 1 to 3 in Cartesian coordinates.



Finely Layered VTI Elastic Media

Following Backus (1962), we suppose that the region of interest

is composed of fine layers having isotropic elastic constants,

λ(z) and µ(z), being functions of depth z. Then,

the average over an arbitrary stack of such layers can be

computed using a layer averaging method. This involves a

Legendre transform that I will not present here. We use the

layer averaging operator symbolized, for example, by brackets

〈µ〉 ≡
1

D

∫
D

0

µ(z)dz.

where D is the depth of the stack of layers.



Backus Averaging Results

The elastic anisotropy coefficients are then related to the

layer parameters by the following expressions:

c =

〈

1

λ + 2µ

〉

−1

, and l =

〈

1

µ

〉

−1

,

f = c

〈

λ

λ + 2µ

〉

,

a =
f2

c
+ 4m − 4

〈

µ2

λ + 2µ

〉

,

m = 〈µ〉 , and b = a − 2m.



How Do Fluids Affect These Constants?

Within each isotropic layer, Gassmann says that the

shear modulus µ is independent of all fluids present.

So all the dependence on fluids in this layered

model comes in through the other Lamé constant

λ = K − 2µ/3,

where K is the bulk modulus. Depending on the

situation, K can be the drained bulk modulus Kd,

or it can be the undrained bulk modulus Ku.



Gassmann’s Equation for Bulk Modulus

Gassmann’s well-known result for fluid-substitution is:

Ku = Kd/(1 − αB),

where Kd is the drained bulk modulus, α = 1 − Kd/Ks

is the Biot-Willis or effective stress coefficient with

Ks being a measure of the grain bulk moduli, while

B is Skempton’s coefficient, containing all the relevant

information about the fluid moduli and porosity.

Note that 1/(1 − αB) is a magnification factor.



Thomsen’s Parameters for Weak Anisotropy

The Thomsen (1986) parameters ε, δ, and γ

are related to these stiffness coefficients by

ε ≡
a − c

2c
,

δ ≡

(f + l)2 − (c − l)2

2c(c − l)
,

γ ≡

m − l

2l
.



Elastic Stiffness Matrix in VTI Media

With σij being the ij component of stress, and

ekl being the kl component of strain:
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,

where a = b + 2m (e.g., Musgrave, 1970; Auld, 1973).

Indices i, j, k, l range from 1 to 3 in Cartesian coordinates.



Singular Value Decomposition of Stiffness Matrix

We can immediately write down four singular vectors

(or eigenvectors):
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and their corresponding singular values (eigenvalues), are

respectively: 2l, 2l, 2m, and a − b = 2m.

All four correspond to shear modes of the system.



Uniaxial Shear Strain

Uniaxial shear strain can be applied to this system

in the form:
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.

Then, the associated energy per unit volume for such

an excitation can be easily determined.



Uniaxial Shear Strain: Energy per Unit Volume

Ignoring the parts of the matrix not relevant, we now have:

Ev = vT





a b f
b a f
f f c



 v,

where the normalized vector of interest is

vT = ( 1 1 −2 ) /
√

6,

and

Ev = 2[a − m + c − 2f ]/3 ≡ 2Geff .



Uniaxial Strain: An Effective Shear Modulus

Thus, based on energy alone, we can justify defining

Geff ≡ [a − m + c − 2f ]/3.

For this and several other reasons I will not have time

to discuss, Geff acts like an effective shear modulus

and it is the only one of the five shear moduli that

ever contains information about pore fluids.



Dispersion Relations for Seismic Waves

The general behavior of seismic waves in anisotropic media is well

known, and the equations are derived in many places including

Berryman (1979) and Thomsen (1986). The results are

ρω2

± =
1

2

[

(a + l)k2

1
+ (c + l)k2

3

±

√

[(a − l)k2

1
− (c − l)k2

3
]2 + 4(f + l)2k2

1
k2

3

]

,

for compressional (+) and vertically polarized shear (−) waves and



Dispersion Relations (continued)

ρω2

s
= mk2

1
+ lk2

3
,

for horizontally polarized shear waves, where ρ is the overall

density, ω is the angular frequency, k1 and k3 are

the horizontal and vertical wavenumbers (respectively), and the

velocities are given simply by v = ω/k with

k =
√

k2

1
+ k2

3
.



Dispersion Relations (continued)

The SH wave depends only on elastic parameters l and m,

which are not dependent in any way on layer λ and,

therefore, play no role in the poroelastic analysis. Thus,

we can safely ignore SH except when we want to check for

shear wave splitting (bi-refringence) – in which case

the SH results will be useful for the comparisons.



Dispersion Relations Simplified

ρω2
+ ≡ ak2

1 + ck2
3 − ∆,

and

ρω2
−

≡ lk2 + ∆,

with ∆ determined approximately by

∆ '

[(a − l)(c − l) − (f + l)2]

(a − l)/k2
3 + (c − l)/k2

1

.





Simplified Dispersion Relations

Recall that

(a − l)(c − l) − (f + l)2 = 2c(c − l)(ε − δ).

We can also rewrite the first elasticity factor in the

denominator as a − l = (c − l)[1 + 2cε/(c − l)].

Combining these results in the limit of k2

1
→ 0

(for relatively small horizontal offset), we find that



Simplified Dispersion Relations (continued)

ρω2
+ ' ck2 + 2cδk2

1,

and

ρω2
−

' lk2 + 2c(ε − δ)k2
1,

since, in this limit, we have ∆ ' 2c(ε − δ)k2
1.

Improved approximations to any desired order can be obtained

with only a little more effort by keeping more terms in the

expansion.









CONCLUSIONS

• Of the five shear moduli of a VTI system, only Geff

as defined here can ever contain information about pore fluids.

• Pore fluids have their biggest effects at θ = 45◦,

on both quasi-P and quasi-SV waves in layered VTI media.

• The stiffening effects of pore fluids can be substantial

if all the necessary conditions are right.

• These results show that the observed moveout of wave

velocities with angle can in some circumstances be a strong

indicator of trapped liquids.




